Upper Bounds for the Number of Quantum Clones under Decoherence
نویسنده
چکیده
Universal quantum cloning machines (UQCMs), sometimes called quantum cloners, generate many outputs with identical density matrices, with as close a resemblance to the input state as is allowed by the basic principles of quantum mechanics. Any experimental realization of a quantum cloner has to cope with the effects of decoherence which terminate the coherent evolution demanded by a UQCM. We examine how many clones can be generated within a decoherence time. We compare the time that a quantum cloner implemented with trapped ions requires to produce M copies from N identical pure state inputs and the decoherence time during which the probability of spontaneous emission becomes non-negligible. We find a method to construct an N → M cloning circuit, and estimate the number of elementary logic gates required. It turns out that our circuit is highly vulnerable to spontaneous emission as the number of gates in the circuit is exponential with respect to the number of qubits involved.
منابع مشابه
Decoherence effects on quantum Fisher information of multi-qubit W states
Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...
متن کاملProbing Quantum Decoherence in Atmospheric Neutrino Oscillations with a Neutrino Telescope
Quantum decoherence, the evolution of pure states into mixed states, may be a feature of quantum gravity. In this paper, we show how these effects can be modelled for atmospheric neutrinos and illustrate how the standard oscillation picture is modified. We examine how neutrino telescopes, such as ANTARES, are able to place upper bounds on these quantum decoherence effects.
متن کاملRigorous performance bounds for quadratic and nested dynamical decoupling
We present rigorous performance bounds for the quadratic dynamical decoupling pulse sequence which protects a qubit from general decoherence, and for its nested generalization to an arbitrary number of qubits. Our bounds apply under the assumptions of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in...
متن کاملTeleportation via an Entangled Coherent Channel and Decoherence Effect on This Channel
We study an entangled two-mode coherent state within the framework of2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation ofa superposition coherent state via an entangled coherent channel. By three differentmeasures with the titles ``minimum assured fidelity (MASF)”, ``average teleportationfidelity” and ``optimal fidelity (f)” we study the ...
متن کاملA Note on Quantum Hamming Bound
Quantum stabilizer codes are a known class of quantum codes that can protect quantum information against noise and decoherence. Stabilizer codes can be constructed from self-orthogonal or dualcontaining classical codes, see for example [3, 8, 11] and references therein. It is desirable to study upper and lower bounds on the minimum distance of classical and quantum codes, so the computer search...
متن کامل